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Zinc and copper are neighbors in the periodic table, so that Zn-
(II) and Cu(I) have isoelectronic states, and consequently, their
organometallic complexes have many similarities in reactivity. For
instance, their ate complexes, lithium triorganozincates R3Zn(II)-
Li 1 and lithium diorganocuprates R2Cu(I)Li,2 react smoothly and
selectively withR,â-unsaturated carbonyl compounds to undergo
1,4-addition reactions, and hence both can be classified as “soft”
reagents (Figure 1).3 However, this similarity is essentially super-
ficial because the group 11 metal is a transition metal element and
the group 12 metal belongs to the main group.4 Thus, it is of interest
to investigate the true reason for the origin of the 1,4-addition
selectivity (“soft” nucleophilicity) of organozincate reagents.5 Here,
we report a theoretical/computational study, using density functional
theory, of the pathway and mechanism of the selectivity of 1,4-
addition of Me3ZnLi to R,â-unsaturated carbonyl compounds, using
s-trans methyl vinyl ketone (MVK (1)) as the simplest model for
acyclic and cyclic enones.6

The reaction pathway of Me3ZnLi addition to 1, as shown in
Figure 2, is completely different from that of the addition of
cuprates.5 The reactants (RT) first form an association complex
(CPi) with a large energy gain (11.8 kcal/mol). On the basis of
X-ray crystallographic and theoretical studies, the central zinc atom
in a zincate, unlike the lithium atom in alkyllithium dimer, is never
solvated.7 This is because the LUMO components are localized
completely on the Li atom in the case of zincates (heterobimetals).6

The formation of this intermediate,CPi, causes the C-Li-C angle
(106.5°) to be deformed by 7.4° and the C-Li bond length (2.26
Å) to be elongated by more than 7% as compared with those in
the reactants (RT). To reach the TS of the 1,4-addition, the (hetero)-
bimetallic rhombic structure of the zincate opens, so that the CH3

can interact with theπ*-orbital of the CdC bond of MVK, and
the CH3-Li electrostatic bond is cleaved with an overall energy
loss of 16.8 kcal/mol. The CH3 transfer from the central Zn through
an “open form” transition state (TS1,4-add(MVK) ) generates an
enolate-zincate cyclic complex (CPii1,4-add), which is-53.0 kcal/
mol lower in energy thanTS1,4-add(MVK) . We also identified
another TS for 1,2-addition,TS1,2-add(MVK) , which is a four-
centered “closed form” TS, analogous to the 1,2-addition TS for

formaldehyde.6b However,TS1,4-add(MVK) is energetically more
favorable thanTS1,2-add(MVK) by ∆∆Eq ) 2.0 kcal/mol.8 These
results are in accordance with the experimental finding that the
zincates show high 1,4-addition selectivity toward enones.

This 1,4-addition of the Me group from Me3ZnLi to MVK takes
place as a single event, as is clear from the smooth charge changes
during the reaction (see Supporting Information). The charges of
the Li and the Zn atoms remain essentially constant during the
reaction. This is the signature of the absence of any oxidation/
reduction process during the reaction and is distinctly different from
the changes that occur in the addition reactions of cuprates to an
R,â-unsaturated carbonyl compound, where the positive charge of
the Cu atom increases then decreases as it goes from Cu(I) to Cu-
(III) and then back to Cu(I).2,4 Our finding is consistent with
previous reports that the 3d orbital is very low-lying in both neutral
and anionic zinc compounds4 and therefore would be incapable of
directly interacting with any organic electrophile.

The origin of this 1,4-addition selectivity was then investigated
based on NBO analysis.9 Second-order perturbation analysis (see
Table 1) ofTS1,4-add(MVK) indicated a large stabilization energy
(8.4 kcal/mol) due to the donor-acceptor interaction, corresponding
to the secondary orbital interaction (defined as INT iv) between
the vinyl π-system (C1dC2: donor NBO) and the unoccupied
σ-orbital of zinc in the bimetal three-center, two-electron bond (Zn-
CH3-Li: acceptor NBO). Reaction pathway analysis of (MeLi)2,
which generally prefers 1,2-addition over 1,4-addition, revealed that
the activation energies of (MeLi)2 for 1,4-addition (open form TS)
and for 1,2-addition (closed form TS) are 10.5 and 10.3 kcal/mol,
respectively (Table 1). The donor-acceptor interaction (INT iv)
energy at the TS for 1,4-addition is only 0.2 kcal/mol, being smaller
than that of the zincate. The bond lengths between the central metal
and the vinyl group at each TS also support the interaction; the
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Figure 1. HSAB classification of organometallic reagents.

Figure 2. Possible reaction pathways of addition of Me3ZnLi to MVK.
Energy changes at the B3LYP/631SVP level are shown in kcal/mol on the
arrows;S ) Me2O.
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Zn-C1 and Zn-C2 lengths are both 2.54 Å, which are much shorter
than those of (MeLi)2: 3.35 Å for Li-C1 and 3.27 Å for Li-C2

(Figure 3).
The reactions of Me3ZnLi with methylethynylketone (MEK)2

and methylvinylimine (MVI) 3 were next examined to assess
substrate generality (Table 1 and Figure 3). On the basis of the
B3LYP-calculated activation barriers, both reactions favor 1,4-
addition over 1,2-addition kinetically, and this is fully consistent
with the experimental observations.10 The values of the NBO
donor-acceptor interaction (INT iv) energy for 1,4-addition were
sufficiently large, being nearly equal to that of MVK1. These results
strongly suggest that the secondary orbital interaction between zinc
and the π-system plays an important role in the 1,4-addition
selectivity regardless of substrate and reagent. It is worth mentioning
that the second intermediate of 1,4-addition of zincateCPii1,4-add

has the characters of bothR-zincio ketone and lithium enolate
because of the short C3-O length and long C2-C3 length (1.30
and 1.40 Å, respectively). In other words, Me3ZnLi reacts with
R,â-unsaturated carbonyl compounds (and imines) in the carbo-
metalation manner, while (MeLi)2 reacts in the nucleophilic addition
manner.11

In summary, we have shown that the 1,4-addition of triorga-
nozincate complexes tos-trans R,â-unsaturated carbonyl com-
pounds takes place through an open form TS without any oxidation/
reduction process (Figure 4). Heterobimetallic systems such as
zincates prefer heterogeneous solvation over homosolvation, that
is, enone and Me2O both coordinate only to M1(Li), and therefore
the lithium ion coordinates four ligands (Figure 4, right). This
heterosolvation decreases the Li-C(alkyl) bond strength, and the
bond breaks more easily to form an open form TS for the 1,4-

addition of the zincate to the enone. The Lewis acid-Lewis base
interaction between the olefin moiety of enones and the zinc center
plays a critical role both for stabilization ofTS1,4-add. and for
activation of the migration ability of the R ligand. The present work
underpins the idea that the combination of metals in bimetallic
reagents and their electronegativities/Lewis acidities provide tunable
functionality in the TSs.12 We intend to investigate the nature of
other standard synthetic reactions of organozincate species, includ-
ing halogen-metal exchange and transmetalation.
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Table 1. Comparison of Activation Energies and Energetic
Analysis of NBO Donor-Acceptor Interactions for 1,4-/1,2-Addition

Figure 3. Four TSs in the 1,4-addition reactions of Me3ZnLi or (MeLi)2

with MVK, MEK, and MVI. See Figure 2 for details.

Figure 4. Summary of reaction pathways of homo- and heterobimetallic
reagents to MVK.
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